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Abstract

In probability learning experiments, a participant is typically presented with one of
two alternatives to select, one of which will lead to a reward. For example, in a 70:30
task, one alternative will lead to a reward on 70% of trials while the other will yield a
reward on the remaining 30% of trials. On probability learning tasks, adults are said
to “probability match,” selecting each alternative with the relative frequency with which
it has been reinforced. Children, on the other hand, are said to “maximize,” always
guessing whichever alternative has been reinforced more often. The different patterns
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between adult and child behavior are thought to have implications for language learn-
ing, especially qualitative differences in child and adult language learning skills and
developmental trajectories on a range of other cognitive tasks. However, a thorough
review of the literature suggests that behavioral profiles of adults and children are
not as straightforward as has been claimed. Crucially, there is little empirical support
for a true probability matching strategy by any participants. Differences in features of
the experimental task and in meta-task knowledge contribute to variability across tasks
and participants in ways that only become evident when systematically reviewing
the literature. Differences in probability learning across populations may not underlie
or indicate causal differences in more complex cognitive behavior, but rather may
themselves be another pattern of behavior that theories of learning and development
must account for.

In probability learning experiments, a participant is presented with two

alternatives to select, one of which will lead to a reward. For example, in

a 70:30 probability learning task, one alternative will lead to a reward on

70% (π) of trials while the other will yield reward on the remaining 30%

(1-π) of trials. Across trials, these two choices are temporally independent,

meaning that reinforcement on one trial does not predict reinforcement

on subsequent trials. The choices are also coupled, meaning that one and

only one alternative will potentially lead to a reward on any given trial.

On each trial, a participant must choose one alternative, typically by pressing

one of two buttons or guessing on which side a light will appear, in order to

gain a reward. The strategy that would produce the highest reward would

be to consistently select the alternative that is associated with the highest

probability of reward on all trials. However, surprisingly, a number of studies

have suggested that adults do not do this. Instead, after a period of experience

with the relative probabilities of the two alternatives, adults are said to

“probability match,” meaning that they select each alternative with the rel-

ative frequencywith which it has been reinforced. In a 70:30 task, this would

mean selecting the 70% reinforced alternative 70% of the time and the 30%

alternative 30% of the time (e.g., Grant, Hake, & Hornseth, 1951; Estes &

Straughan, 1954; Koehler & James, 2010; Neimark & Shuford, 1959;

see Edwards, 1956, Myers, 1976 and Vulkan, 2000 for reviews). Children,

on the other hand, are said to “maximize,” meaning they always select the

alternative with the higher probability of producing a reward (Goldman

& Denny, 1963; Jones & Liverant, 1960; Stevenson & Weir, 1959).

Researchers have long been interested in why participants, especially adults,

seem to make non-optimal choices in probability learning tasks. If true, what

might underlie this non-optimal behavior and what are the implications of

behavior on probability learning asks for other aspects of cognition?
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In this review, I will re-examine the evidence that adults adopt a non-

optimal strategy in probability learning tasks, overviewing previous research

on probability learning by nonhuman animals, as well as by human adults

and children. I will then discuss how probability learning behavior has been

applied to other cognitive development literatures. To briefly foreshadow

the results, on many occasions probability learning behavior appears to have

been misinterpreted or misstated, with consequences for how we interpret

patterns of behavior on probability learning tasks and, thus, for the insights

we gain into language learning processes that derive from probability learn-

ing behavior.

I will first review the non-human animal probability learning literature,

which, more than any other literature, argues against simplistic explanations

of developmental differences or cross-species differences on probability

learning tasks. The animal literature highlights the importance of task

demands that serve as better explanations for many differences in behavior.

Strikingly, the conclusion from this research is that probability matching

behavior, and in fact any less-rational behavior that deviates from maximiz-

ing, is likely accounted for by differences in task demands. To the extent that

there is variability across species or tasks and animals appear to be doing

something more like probability matching, this behavior can be attributed

to task demands or experimental design, such as the clarity of the boundaries

between trials, and to differences in learning abilities across species. The

apparent lack of species-variant learning mechanisms (as was once proposed)

provides no support for probability matching.

Next, I will review literature, primarily from the 1950s to 1970s per-

taining to probability learning in adults and children. The animal literature,

which emphasizes the importance of task demands, may aid in the inter-

pretation of the human adult data, where, once again, a striking observation

is the relevance of task design for data interpretation. Surprisingly, and con-

trary to popular belief, there is little evidence for probability matching

behavior in adults (for additional discussion of this claim, see Edwards,

1956, Myers, 1976 and Vulkan, 2000). The departures that have been

observed from maximizing behavior can be attributed to either task manip-

ulations or learned biases that adults bring to probability learning tasks. In

fact, studies that directly manipulate task design or instructions across partic-

ipant groups comprise a sizable portion of the probability learning literature,

and these comparative studies strongly suggest task behavior is extraordi-

narily affected by experimental design. The conclusion from a thorough

review of this research is that trying to describe a qualitative difference
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between probability matching and maximizing is not an appropriate char-

acterization of the behavior. Instead, there are a number of different reasons

people and animals will fail to maximize. Understanding the factors that push

participants toward or away from true maximizing behavior, and the con-

sequences for meta-task awareness is the true lesson of this literature.

In the final section, I address how the probability learning literature has

been applied to language learning and other cognitive domains. For exam-

ple, a child’s ability to easily learn their native language or to regularize prob-

abilistic language input (creolization), where adults fail to do so, is often

attributed to children’s tendency to maximize rather than probability match

in probability learning tasks. I will discuss how the interpretation of the

developmental trajectories of some behaviors can and cannot be aided by

knowledge of the probability learning literature. Finally, I discuss the role

of literature reviews more broadly in the practice of science, and key insights

that can come from synthesizing existing literatures.

1. Non-human animal probability learning

Many findings in the animal probability learning literature are directly

relevant to the study of human probability learning and its applications to

other aspects of human cognition. First, an obvious lesson from the animal

learning literature is the importance of task design. Second, current theories

that posit that adult and child learning mechanisms are categorically different

are reminiscent of many of the debates that took place in the animal liter-

ature, regarding differences in learning behavior across species and whether

these cross-species differences could be caused by categorically different

learning mechanisms. There is a striking overlap in the debates that took

place between researchers within the non-human animal literature and

within the human probability learning literature.

1.1 Typical task design
In probability learning tasks with animals, animals are typically first trained

to press a button or lever, or to touch a target to receive a reward. Once

this behavior has been learned, the probability learning task can begin.

On a typical trial, the animal chooses one of two targets. If the animal is

correct, it receives some sort of food reward. However, if the animal

is incorrect, different studies provide one of three possible outcomes: guid-

ance, correction and non-correction.

In a probability learning task with “guidance,” after an incorrect

response, the animal’s attention is drawn to the correct target. In some
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instances, the correct alternative may remain illuminated while the incorrect

alternative is darkened. In other cases, the incorrect target may be removed

while the correct target remains. The trial ends when the animal selects that

target and is reinforced. The second method involves “correction.” In this

procedure, after an incorrect response, typically nothing happens, and the

animal continues to make target selections until the correct alternative is

selected. As with guidance, the trial ends when the animal is reinforced.

The goal of the guidance and correction procedures to ensure that the prob-

ability of reinforcement across the experiment is exactly the experimentally

determined proportion. For example, in a 70:30 probability learning task,

one side is indeed reinforced on 70% of trials and the other on 30% of trials.

The third procedure is the “non-correction.” This is the procedure most

commonly used with human participants. In this task, after an incorrect

response no reinforcement is given. Whatever event marks the inter-trial

interval (such as a certain elapse of time or a period of darkness) immediately

occurs. Under this technique, exact probability of reinforcement may vary

from the experimentally manipulated proportion. Non-correction para-

digms were often considered “easier” because they tended to promote more

maximizing behavior, but researchers often had reasons for either preferring

to keep actual reinforcement rates consistent with the target proportions, or,

in many cases, to compare and contrast behavior as a consequence of which

paradigm was employed.

Another aspect that varied across studies is whether the probability learn-

ing task targets are distinguished spatially or visually. In spatial tasks, the

animal must learn reinforcement probabilities associated with the spatial

orientation of targets: right and left. In visual tasks, the animal must learn

reinforcement probabilities associated with targets that differ visually in some

way—for example, color or pattern—but that can appear on either the right

or left side of the testing apparatus. The type of reinforcement procedure

used (guidance, correction or non-correction) and the type of problem

the animal had to learn (spatial or visual) significantly affect task difficulty

and thus behavior. The experimental characteristics of the animal studies

reviewed here are included in Table 1.

1.2 Findings
Early probability learning researchers emphasized cross-species differences in

task behavior. This led to the hypothesis, proposed by Bitterman (1965), that

evolutionarily driven species differences led to different learning mecha-

nisms across species. Probability learning experiments tended to show that
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Table 1 Animal probability learning studies.
Author year Animal Ratio Discrimination Reinforcement type Number of trials sResults

Lauer and Estes

(1954)

Rat 75:25 Spatial

(T-maze)

Correction 56 Matched

Bitterman,

Wodinsky, and

Candland (1958)

Fish 70:30 Visual Guidance, no guidance 500 Matched (guidance)

Maximized (no guidance)

Bitterman et al.

(1958)

Rat 70:30 Visual Guidance 500 Maximized

Wilson and

Rollin (1959)

Monkey 75:25 Spatial No correction, correction 1920 (correction) 384

(no correction)

Maximized (more slowly with

correction)

Wilson (1960) Monkey 75:25 Spatial Correction, guidance 1024 (correction) 768

(guidance)

Maximized (more slowly with

correction)

Meyer (1960) Monkey 100:0 to 50:50, in increments

of 10 (between Ss)

Visual No correction, then

“implicit correction”

(only see reward, cannot

select it)

500 Maximized, even in

post-experiment 55:45

reinforcement task

Behrend and

Bitterman

(1961)

Fish 70:30➔ 0:100➔ 20:80 or

40:60➔ 50:50➔ 100:0 or

70:30

Visual Guidance, then no

guidance (final 100:0

or 70:30 block)

500 (70:30), 420 (20:80

and 40:60) 340 (50:50)

420 (100:0 and 70:30)

Matched (guidance)

maximized (no guidance)

Bullock and

Bitterman

(1962)

Pigeon 80:20, 70:30, 60:40 Visual Guidance 920 Matched

Uhl (1963) Rat 60:40, 70:30, 80:20, 90:10 Spatial Correction, non-

correction

1000 Close to maximizing,

correction learned more

slowly. No effect of incentive

(sucrose concentration) in

reward
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Graf, Bullock,

and Bitterman

(1964)

Pigeon 70:30 Spatial, visual Guidance or no guidance,

correction or no

correction

2400 (first press a center

key (CK)) 1760 (no

center key) but variable

length blocks of

reinforcement type

Visual-No CK: Correction and

guidance: matched; non-

correction: maximized CK:

Correction: matched; guidance

and Non-correction:

maximized Spatial-(center key,

correction) mostly maximized

(some variation across birds)

Wilson, Oscar,

and Bitterman

(1964)

Monkey 70:30 ➔ 50:50➔ 30::70

➔ 40:60 or 60:40

Spatial Correction 1800 (70:30) 1200

(50:50) 2000 (30:70)

1400 (40:60 or 60:40)

Matched

Longo (1964) Cockroach 100:0 or

70:30➔ 0:100➔ 40:60 or

20:80➔ 50:50

Spatial Correction (Y maze, exit

to escape shock)

260 (100:0 or 70:30)

140 (0:100) 160 (40:60

or 20:80) 180 (50:50)

Matched

Kirk and

Bitterman

(1965)

Turtle 70:30 Spatial, visual Correction 400 Matched (visual) mixed

performance (spatial)

Warren and

Beck (1966)

Cat 50:50 to 100:0 by 10,

within Ss

Visual No correction, then

“implicit correction”

(only see reward)

500 trials each ratio Intermediate, because

individual differences and

tendency to perseverate on

correct alternative

Shimp (1966) Pigeon 25:75 (red) and 75:25 (green) Spatial No correction 20,000 Maximized (some

perseveration)

Wright (1967) Rat 70:30 Spatial

(T-maze)

Correction 110 Maximized. Faster with greater

reward, no effect of drive

(degree of food deprivation)

Treichler (1967) Monkey 80:20 or 60:40 Visual No correction 880 Maximized. Faster with 80:20,

no effect of food type

Weitzman

(1967)

Rat 70:30, 70:30-variant,

designed to be less like the

fish task

Spatial Guidance 400 Matched (70:30) maximized

(70:30-Variant)

Continued
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Table 1 Animal probability learning studies.—cont’d
Author year Animal Ratio Discrimination Reinforcement type Number of trials sResults

Weitzman

(1967)

Fish 70:30 Spatial Guidance 400 Matched

Calfee (1968) Rat 80:20 or 65:35 Spatial Guidance 3680 Maximized, though some

animals retained a preference to

the incorrect side

Schweikert and

Treichler (1969)

Cat 90:10, 80:20, 70:30 or 60:40 Visual No correction 500, except 60:40, 1000 Maximized, more slowly than

monkeys and more slowly in

70:30 and 60:40

Topping and

Parker (1970)

Pigeon 70:30 Spatial No correction 1200 Maximized. Longer delays or

variable delays between

selection and outcome are

slower to asymptote

Shimp (1970) Rat 70:30 Spatial Correction 12,500 Maximized (looks like

matching earlier in training)

Bitterman

(1971)

Rat 100:0➔ 70:30, only 70:30 Visual Guidance 500 (switch group 340,

because 160,100:0

trials)

Matched, but 70:30-switch

group maintained a higher

proportion of high-probability

choices than 70:30 group

Williams and

Albiniak (1972)

Crocodile 75:25 ➔ 100:0➔ 87.5:12.5

➔ 12.5:87.5

Spatial

(T-maze)

Correction 120 (75:25) 72 (100:0)

72 (87.5:12.5) 144

(12.5:87.5)

Overshot matching, because a

tendency to re-pick the

low-frequency alternative

when it had just been

reinforced

Fischer (1972) Chick 70:30 Visual, spatial

(T-maze)

Correction, no correction

and limited correction

(finite number of

choices/trial)

As many as they needed

to maximize (varied by

condition 100–700)

Maximized. Unlimited

correction increased trials to

maximize
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in probability learning tasks without correction, mammals, including rats

(Bitterman et al., 1958) and monkeys (Wilson, 1960; Wilson & Rollin,

1959) tended to maximize while non-mammalian species, such as fish

(Bitterman et al., 1958) and pigeons (Bullock & Bitterman, 1962) tended

to probability match. Thus, more “intelligenta” species, like mammals,

tended to behave optimally by maximizing, while less intelligent species

behaved less optimally, and probability matched. This position is further

supported by studied of decorticated rats, who probability match, like less

intelligent species do (Gonzalez, Roberts, & Bitterman, 1964).

This evolution-based perspective that aimed to understand qualitative

differences in learning across species encouraged researchers to investigate

a wider range of species in probability learning tasks. If learning mechanisms

are evolutionarily determined, then animals that are evolutionarily inter-

mediate between the more typically studied fish and pigeons, on the one

hand, and mammals such as rats and monkeys, on the other, should show

learning mechanisms that yield behavior between that of the more typically

studied animals. Indeed, studies with cockroaches have shown match-

ing behavior (Longo, 1964) and studies with turtles (Kirk & Bitterman,

1965) and crocodiles (Williams & Albiniak, 1972) yielded intermediate

data-neither matching nor maximizing. These studies of many different

animals were generally interpreted as supporting the hypothesis that animals

employ qualitatively different learning mechanisms as a consequence of

evolution—specifically, the length of time since sharing a common ancestor

with humans. According to this evolutionary approach, different behavior

between mammals and other species was a consequence of different species

employing categorically different learning mechanisms.

Other researchers disagreed that the species differences were best attrib-

uted to categorically different learning processes. Instead, a counter-theory

argued that the differences in behavior could be attributed to different learn-

ing rates (not qualitatively different learning mechanisms) or differences in

task design (Fischer, 1972; Shimp, 1966; Topping & Parker, 1970). The

counter-theory posited that all animals should maximize, but the less intel-

ligent animals might take more time to do so. On this view, all animals also

should use similar learning mechanisms but might have different learning

rates. If learning mechanisms are similar across species, differences in task

a “Intelligence” was the term used in the literature at that time and was a common way to talk about

differences across species. Now, because different animals might be better at different tasks, there is

little agreement about what intelligence might mean in the context of cross-species differences.

Today, researchers might use terms like “cognitive flexibility” or “learning rate” of a particular task

to describe the specific differences between species this literature referred to.

9Limited evidence for probability matching as a strategy

ARTICLE IN PRESS



or training procedure might better account for the pattern of maximizing

and probability matching behavior observed in the literature.

Researchers therefore explicitly investigated the role of task design

and number of training trials in the observed behavior across species. In

all probability learning studies, animals generally began all tasks selecting

each alternative at chance levels and shifted toward selecting the higher

probability of reward alternative more often. A major finding was that

the matching behavior, which was thought to be characteristic of some

animals including pigeons, eventually came to look like maximizing when

the task was prolonged (Shimp, 1966; Topping & Parker, 1970).While most

studies involved only hundreds or occasionally a low-thousands number of

trials, Shimp (1966) observed 20,000 trials in a variant of a typical probability

matching task. In his procedure, when keys were lit red, the reinforcement

probabilities of the right and left keys were 25:75 and were reversed (75:25)

when the keys were green. Pigeons maximized within 20,000 trials, but had

the experiment consisted of fewer trials, the behavior might have been

described as probability matching. Behavior that appeared to be probability

matching at first eventually came to look like maximizing as the animal

gained more familiarity with the task. Again, by increasing the number of

trials, Shimp (1970) also found maximizing in a correction task with rats,

where maximizing was previously thought to not occur. Rats maximized

in 12,500 trials in a task that had previously yielded matching with 56 trials

(Lauer & Estes, 1954) or only an overshooting of matching with 1000 trials

(Uhl, 1963). These findings disputed the notion of categorically different

learning mechanisms across species and pointed to a feature of task design

that affected behavior: number of trials. Perhaps all animals would maximize

if given enough training, and studies that found probability matching simply

stopped the study too soon. The finding that extending training leads to

more maximizing behavior does not support the notion of separate learning

mechanisms: one that asymptotes in maximizing and one in probability

matching. Rather, they support a single learning mechanism that ultimately

results in maximizing, plus various attributes of different animals (such as

learning rate) that cause these animals to reach maximizing behavior sooner

or later.

Systematic investigations also found that the type of reinforcement proce-

dure (guidance, correction or non-correction) affected behavior. Specifically,

learning rates tended to higher, and maximizing was reached more quickly,

with the non-correction procedure. Though many researchers do not

explicitly address the effect of task, this pattern is evident in the data.
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For example, in a study with pigeons, using guidance (a harder task) and only

920 trials, Bullock and Bitterman (1962) found matching. In a similar task

but using non-correction, Graf et al. (1964) and Topping and Parker

(1970), with 1760 and 1200 trials respectively, found maximizing. As the

task got harder (guidance vs. non-correction), more trials were necessary

to attain maximizing. Many other findings are consistent with the idea that

task substantially contributes to behavior patterns (Bitterman et al., 1958;

Fischer, 1972; Uhl, 1963; Wilson, 1960; Wilson & Rollin, 1959). One

possible explanation, articulated by Fischer (1972), is that trial boundaries

are less clear in the guidance and correction procedures. As a consequence,

it may be less clear to the animal what statistics they should compute or

track. The clearer trial boundary of the non-correction procedure may facil-

itate learning by making the relative reinforcement probabilities clearer to

the animal. Therefore, because reinforcement probabilities are easier to learn

in non-correction tasks, animals in such tasks should be more likely to

maximize.

Across many studies with non-human animals, a clear theme emerged

that anything that made the probability learning task more difficult would

lead to a slower learning rate and a slower shift to maximizing behavior.

If probability learning is more difficult for fish and pigeons relative to the

“smarter” rats and monkeys, it would make sense that the fish and pigeons

need more trials to maximize, which would lead to the observed patterns of

probability matching with an insufficient number of experiment trials.

Further, if a guidance or correction reinforcement procedure made the

probability of reinforcement more difficult to learn than a non-correction

procedure, researchers should predict faster learning and more observed

maximizing with the non-correction procedure. Further supporting this

idea, animals participating in visual tasks (color or pattern dependencies)

tended not to maximize or maximize as quickly as in spatial tasks (left/right

dependencies), which is consistent with the fact that a spatial distinction is

easier for an animal to learn that a visual one (Graf et al., 1964; Kirk &

Bitterman, 1965). A clear pattern emerges: the more difficulty a task was

for an animal—either because of the task design or because of the learning

rate of the animal, the more trials the animal required to attain maximizing

behavior.

Task difficulty alone cannot explain all non-maximizing behavior, but

in conjunction with a few other phenomena, the appearance of matching

behavior seems to disappear. One well-observed phenomenon is that in

many of these studies, there was a tendency for animals to perseverate.
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Often after a correct response, animals tended to choose that target again

(Shimp, 1966;Warren & Beck, 1966). This perseveration increased the time

necessary to reach maximizing behavior and may account for some deviance

from true maximizing behavior. Further, occasionally, some animals would

form a preference for a particular side and continue to choose that side, or

alternately gain a preference for switching and alternate between trials

regardless of reinforcement proportion (Calfee, 1968). This perseveration

or motor repetition behavior can explain remaining deviations from maxi-

mizing behavior after task difficulty and number of trials is considered.

Crucially, these deviations from maximizing behavior seem to stem from

task-specific or response-specific behaviors, not from a probability matching

behavior, per se.

Other subtle features of the tasks used to assess probability learning

behavior may account for additional deviation from maximizing. One such

phenomenon is the tendency for what may appear to be matching behavior

to actually be a product of attending to more local patterns, often called

“momentary maximizing” (Shimp, 1966). Given outcomes on previous tri-

als, occasionally the lower frequency alternative was, in fact, more likely to

yield reinforcement when considering the subtle non-independence of trials

in some paradigms. Many animals were able to learn these subtle local pat-

terns. In deviations from typical probability matching tasks when there are

indeed subtle dependencies that can be learned in order to predict with

greater accuracy which alternative will yield a reward, animals seem to be

able to learn them (Shimp, 1966, 1967). For example, in a complex task with

variable ratio reinforcement coupled with a probability learning task (not

every trial gave the animal an opportunity for reinforcement) pigeons

seemed to track outcomes on prior trials and exhibited matching behavior

that was a consequence of maximizing given the outcome on prior trials

(Shimp, 1966). Subsequent studies with variable ratio or variable interval

reinforcementwith pigeons (Hinson&Staddon, 1983) or reinforcement that

is contingent on the previously selected target with pigeons (Fetterman &

Stubbs, 1982) and rats (Hiraoka, 1984), suggest that animals are capable

of tracking outcomes on prior trials and applying that information to future

behavior. Animals indeed seem to be able to perform these tasks in a very

sophisticated way that optimized their reward, even when to do so they

must track multiple patterns at once. Animals are clearly able to learn

subtle patterns across experiment trials—whether they arise by design or

incidentally.
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To translate this sophisticated learning back to probability learning tasks,

where local dependencies theoretically should not exist, subtle local cues

nevertheless appeared in some classic probability learning designs. In many

probability learning studies, targets are not determined trial-to-trial, but

rather the sequence of reinforced alternatives is determined prior to the

study. Experimenters ensured that blocks of a certain size maintained the tar-

get reinforcement ratio. As a consequence, in some experiments, trials are

not completely independent. In some designs, a 70:30 reinforcement prob-

ability will be implemented by having 7 out of every 10 successive trials

being reinforced (Weitzman, 1967) or ensure that there are never more than

five high-frequency (rewarded) events in a row (Bitterman et al., 1958;

Graf et al., 1964). As a consequence of these design choices, the probability

of reinforcement on the low frequency target actually increases with each

successive reinforcement of the high-probability target. Thus, the probabil-

ity of the low frequency target, in the context of previous trials, may become

the alternative more likely to lead to reward in some contexts. Animals seem

to take advantage of these subtle context patterns. At least in some cases,

when animals seem to be probability matching, they may instead be using

a momentary maximizing strategy—indeed maximizing, but over more

complex patterns than the researchers intended. The tendency of animals

to momentarily maximize suggests sophisticated learning mechanisms,

which should be considered when interpreting human data. This tendency

to learn subtle patterns—or believe that there is a subtle pattern to learn—

will be a major feature of the discussion of human probability learning

behavior.

1.3 Summary
Though some researchers hypothesized qualitative species differences in

behavior on probability learning tasks, subsequent findings challenged this

hypothesis. Instead, there seems to be a common learning mechanism with

quantitative differences in learning rate across species, and with task charac-

teristics playing an important role in the resulting behavior. Critically, all

animals seem to be using a strategy that eventually will yield maximizing.

The fact that all non-human animals in these studies share a common learn-

ing mechanism on these tasks should inform our understanding of human

behavior on these tasks. When the human (adult or child) behavior diverges

from non-human animal behavior on these tasks, it is important to consider
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whether such differences are more likely to be due to a qualitatively different

learning mechanism or, instead, if they too can be explained by task char-

acteristics or other types of knowledge that humans might bring to the task.

2. Human probability learning: Adults

A commonly held view is that in a probability learning task, adults

usually probability match rather than maximize. Implicit in the assumption

that behavior on a probability leaning task can either be described as prob-

ability matching or maximizing is that there are two separate learning mech-

anisms or discrete behavioral patterns that asymptote at different levels,

either 1 (maximizing) or π (probability of reward). Probability matching

is thought to persist in adults despite the fact that this strategy leads to a lower

rate of reward or correct responses relative to a maximizing strategy. So why

might adults adopt this less optimal strategy?

What a review of the adult probability learning literature shows is

that, similar to the case of non-human animal probability learning just dis-

cussed, the evidence for probability matching in human adults is far less

straight-forward that it might initially seem. This is not to say that in some

probability learning tasks adults do not exhibit response rates at or near π for
some period of time. Rather, there is very little data to support the idea that

there exists a learning mechanism or pattern of behavior that asymptotes at π
over extended training. Instead, human behavior on probability learning

tasks can better be described as a single learning mechanism or behavior

that asymptotes at maximizing, along with various task effects and effects

of prior knowledge that push humans toward π. These factors are described
in the following sections and include experimental design, task instructions,

task difficulty and various experience-based biases. Some of these factors lead

to the appearance of matching-like behavior. But because the observed

matching-like behavior derives from a very large list of factors, it may not

make sense to treat “matching” as a categorically different learning strategy.

2.1 Typical task designs
In typically probability learning tasks (sometimes called binary choice

tasks) with adults, participants predict which of two or occasionally three

alternatives will occur next (Cotton & Rechtschaffen, 1958; Gardner,

1957, 1958). In some tasks, participants guess which symbol, shape or

word will appear next on a card or computer screen (Edwards, 1961;

14 Jessica L. Montag

ARTICLE IN PRESS



Gaissmaier & Schooler, 2008; Neimark & Shuford, 1959; Ross, 1954;

Rubenstein, 1959; Singer, 1967, 1968), or will be read aloud by an exper-

imenter ( Jarvik, 1951; McCracken, Osterhout, & Voss, 1962). In other

designs, participants might guess one which side a light will appear

(Braveman & Fischer, 1968; Estes & Straughan, 1954; Friedman, Padilla, &

Gelfand, 1964; Myers, Fort, Katz, & Suydam, 1963; Siegel & Goldstein,

1959; Suppes & Atkinson, 1960), or what color ( Jones, 1961) or pattern

(Hake & Hyman, 1953) of lights will turn on, or whether a light (or second

light) will turn on at all (Grant et al., 1951; Grant, Hornseth, & Hake,

1950; Humphreys, 1939). Occasionally a participant might guess which lever

will turn off a buzzer (Arima, 1965) or lead or a reward on a slot machine

(Edwards, 1956; Goodnow & Pettigrew, 1955). There was occasionally a

monetary or other award associated with correctly predicting the trial outcome

(Edwards, 1956; Goodnow & Pettigrew, 1955; Peterson & Ulehla, 1965).

Occasionally, studies manipulated the amount of monetary reward or risk asso-

ciated with correct or incorrect guesses (Myers et al., 1963; Siegel & Goldstein,

1959; Suppes &Atkinson, 1960). However, in themajority of studies reviewed

here, “being correct” is the only reward on each trial.

2.2 Findings
Contrary to the commonly-held view, there are surprisingly few studies

that show true matching behavior, asymptoting at π. Though a handful

of studies do indeed show true matching behavior (Neimark & Shuford,

1959), they are rare and often only show true matching behavior in a single

experiment or experimental condition out of many runs. Instead, parti-

cipants tend to overshoot π (for example, responding 75–85% to the 70%

alternative in a 70:30 experiment (e.g., Edwards, 1961; Estes & Johns,

1958; Estes & Straughan, 1954; Friedman et al., 1964; Grant et al., 1951;

Hake & Hyman, 1953; Jarvik, 1951; Myers et al., 1963; Unturbe &

Corominas, 2007; see Vulkan, 2000 for an extended discussion of this

pattern). In fact, this tendency for studies of adult probability learning to

show behavior that overshoots true matching behavior has been a major

finding of a number of reviews of adult probability learning (Edwards,

1956; Estes, 1964; Myers, 1976; Vulkan, 2000). An important initial obser-

vation about the adult probability learning literature is that what is often

described as probability matching is more accurately overshooting true

probability matching. For a table much like Table 1, but summarizing adult

probability learning studies, see Vulkan (2000).
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A number of task characteristics were consistently associated with

a greater degree of overshooting probability matching. In fact, there is

evidence that similar task factors affect matching versus maximizing behavior

in probability in both human and non-human primates (Saldana, Claidière,

Fagot, & Smith, 2020). Many studies with human participants explicitly

tested the effects of experimental instructions or task design on matching

versus maximizing behavior. For example, a greater monetary reward or

monetary risk was consistently associated with behavior that more closely

approached maximizing (Myers et al., 1963; Siegel & Goldstein, 1959;

Suppes & Atkinson, 1960). I will discuss additional examples below. Of

course, overshooting probability matching is not the same as maximizing.

I focus this review on understanding the processes can account for a behavior

that is somewhere between 1 and π. I propose that the processes that underlie
behavior can be best described as variants on maximizing, and the most

fruitful approach is to understand the task and individual factors that prevent

participants from exhibiting true maximizing behavior. Below I describe

four factors that may prevent adults from truemaximizing behavior on prob-

ability learning tasks.

One factor is experiment length. Like non-human animals, adult human

participants start from a strategy of random guessing (before they understand

anything about the nature of the task) and then slowly approach maximizing

behavior. An experimenter sampling behavior for a short period of time

(i.e., stopping before maximizing is reached) is quite likely to observe a

participant’s response rate close to π, or somewhere between π and 1.

This tendency is visualized in Fig. 1. Stopping data collection in zone

Fig. 1 A visualization of learning trajectories in probability learning experiments.
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Awould yield behavior that would be described as undershooting matching,

stopping data collection in zone B would yield matching behavior and stop-

ping data collection in zone C would yield maximizing behavior. A single

learning behavior, assessed at different points in time, would be categorized

as qualitatively different profiles of behavior. This explanation is supported

by the observation that the tendency to overshoot π becomes particularly

pronounced after extended numbers of training trials (Shanks, Tunney, &

McCarthy, 2002). Previous reviews of the probability learning literature

have come to a similar conclusion with respect to the number of training tri-

als. Edwards (1956), Estes (1964), Myers (1976) and Vulkan (2000) all point

out that with extended training, participants tend to overshoot π. This is
a point of consistency between the non-human animal and human adult lit-

eratures: given more trials, participants will approach maximizing behavior.

Another factor that may lead participants to respond at a rate between π
and 1 is task difficulty. Experimenters often approach probability learning

tasks with the assumption that participants will quickly learn the parameters

of the task. They often overlook the extent to which a participant has to

learn about the task in order to produce an optimal behavior. For example,

Green, Benson, Kersten, and Schrater (2010) note that participants have to

learn a number of aspects of the experimental design that are not obvious

before they can choose how to behave optimally. First, participants must

learn that one alternative is more likely to lead to reinforcement than the other.

While this may seem trivial at first, consider that in a 70:30 reinforcement

task, after 20 trials, about 5% of the time, the lower-probability may be

reinforced at least equally often as the high-probability alternative, and

nearly a quarter of the time the higher-probability alternative will be

reinforced with a 12-to-8 or less extreme split. Participants may not be able

to conclude that the higher-probability alternative is indeed higher proba-

bility with this data—even assuming perfect memory for past trials (Myers,

1976). Even this simple fact about the task, that one alternative will more

likely lead to success than the other, may actually take upwards of 40 trials

to discover, depending on reinforcement probabilities and other aspects of

the task.Moreover, even when it becomes clear that one alternative is linked

to a higher success rate, the participant still cannot be sure about the demands

of the task. Participants must also learn that the reinforcement of the two alter-

natives is independent, so the “correct” alternative on one trial has no bearing

on which will be correct on the next. As we will see below, this task

characteristic seems particularly difficult for adults to discover. Finally,

participants must learn that the outcomes are coupled, or that the reinforcement
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probabilities of the two alternatives are complementary and add to 1. Green

et al. (2010) emphasize that these parameters are not necessarily the most

plausible in the mind of the participant at the beginning of the task, so there

must be an appreciation for the length of training required for participants

to realize that reinforcement of the alternatives are unequal, temporally

independent and coupled.

A third factor that leads participants to respond at rates belowmaximizing

is that experimental designs sometimes actually violate trial independence.

In many studies, as was true in the non-human animal literature, each trial

is not randomly generated independent of prior trials. Rather, a random

number sequence is generated, and trial outcomes are based on that

sequence, with important caveats. First, the total set of all trials must con-

form to the reinforcement probabilities, so the designated “correct” alterna-

tive is not independently generated for each trial. Second, in many cases,

blocks of a certain number of trials must also conform to the target proba-

bilities. For example, in many studies 8 out of every 10 or even 4 out of every

5 trials must reinforce the high-probability alternative (e.g., Arima, 1965;

Jarvik, 1951; Ross, 1954). As noted by Vulkan (2000), the problem with

placing these restrictions on task sequences is that sequences are no longer

random. Under these circumstances, the gambler’s fallacy (believing that

a long string of occurrences of one event makes the other event more likely)

is no longer a fallacy, but a truth of the experimental design. After a run

of a certain length, it becomes rational to choose the low-frequency alter-

native, which may account for some under-maximizing behavior. Similar to

the animals in the previously discussed studies, adults may be “momentarily

maximizing” when they fail to maximize overall.

A fourth and final factor that may lead participants away from true

maximizing is the prior experience that adult participants bring to the prob-

ability learning task. This prior experience may take a number of forms, but

most relevant here are experiences that adults might have had that dissuade

them from believing that trials are truly independent. Adults’ experience

might suggest that events are not random, but that the outcome of one trial

may be informative of the outcome on the next. As Ayton and Fischer

(2004, p. 1369) describe, “outside of gambling casinos and psychology lab-

oratories there are very few—if any—circumstances where one can safely

assume conditional independence of a succession of events.” This lack

of experience is consistent with observed patterns of behavior. Adults are

inaccurate at generating or even identifying random sequences (Lopes,

1982). When asked to generate random sequences, adults tend to produce
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more alternations and shorter runs than would be expected in a truly random

sequence (Bar-Hillel & Wagenaar, 1991; Wagenaar, 1972), and they judge

sequences with more alternations than would be expected in a truly random

sequence as being more random-like than actual random sequences

(Ayton & Fischer, 2004; Falk & Konold, 1997). If adults have little experi-

ence with random, independent events, enter the lab assuming that events

are unlikely to be independent, and do not find the experimental sequences

convincing evidence of independent events, it would be difficult for adults

to learn that trials are actually independent in the experimental task and thus

to shift their behavior in accordance with this information.

Why might the belief that trials are not independent lead to behavior

between matching and maximizing? One possible explanation is that

participants are searching for the underlying structure—the pattern that pre-

dicts which alternative is “correct.” Gaissmaier and Schooler (2008) found

that when there was a pattern governing which alternative was correct,

participants who exhibited an exploratory “trial and error” pattern of

behavior, alternating between both alternatives, tended to find the pattern

more often than participants who exhibited behavior closer to maximizing.

Perhaps when adults exhibit matching-like behavior, it is not because they

are employing matching as an actual (irrational) strategy, but because

they believe there is an underlying pattern to the sequence and are actively

searching for it (Anderson, 1960; Gaissmaier & Schooler, 2008; Hake &

Hyman, 1953; Wolford, Newman, Miller, & Wig, 2004). Consistent with

this assessment, in a review of probability learning, Vulkan (2000) speculates

an adaptive motivation behind probability matching and comes to a similar

conclusion. In contrast to many assumptions that probability matching

is a sub-optimal behavior that reflects flaws or shortcomings in adult learn-

ing (Koehler & James, 2009; Otto, Taylor, & Markman, 2011; West &

Stanovich, 2003) or “underthinking” task demands (Koehler & James,

2010), Vulkan suggests that switching between the two alternatives can

facilitate finding a pattern in the sequence. If participants believe there

is a pattern to be found, maximizing may not be the best strategy to find

that pattern. Such a behavior, while pushing a participant away from

maximizing and toward π, is still not properly described as probability

matching.

If non-maximizing facilitates a search for a pattern, then when parti-

cipants can be convinced that the probabilities of reinforcement are truly

random, they should showmoremaximizing behavior. Many studies explic-

itly tested this hypothesis and assessed multiple strategies for convincing
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participants that trials really are independent. One simple way to convince

participants that trials are independent may be to extend the number of trials

in an experiment. Typically, probability learning tasks only consist of about

200 trials, but Edwards (1961) extended the task to 1000 trials and found

that later in the experiment participants exhibited maximizing behavior.

As the experiment continues and the participant still cannot find an under-

lying pattern, they may “give up” or become convinced there is no pattern

and begin maximizing.

Another way to convince participants of the independence of trials is to

vary the task design to demonstrate to the participant that the reinforced

alternative is truly random. In studies where participants are explicitly shown

that the reinforcement sequence is random, they tend to exhibit more

maximizing behavior. Participants showed more maximizing behavior

when participants rolled a fair die to determine reinforcement (Newell &

Rakow, 2007), or when they watched the experimenter shuffle the cards

that predicted reinforcement compared to when the cards were randomized

out of their view (Beach & Swensson, 1967; Rubenstein, 1959). In a clear

demonstration of this phenomenon, Peterson and Ulehla (1965) found

more maximizing behavior when participants rolled a die to determine rein-

forcement, than when participants guessed the color of a card in a deck,

presumably because participants could be more confident that the outcome

of the dice roll was truly random. These simple methodological tweaks had

meaningful effects on participants’ behavior, suggesting that meta-task

factors are clearly influencing participants’ choices.

In another clear demonstration of the role of task design on participant

behavior, Morse and Runquist (1960) explicitly manipulated task design.

When participants performed two tasks with identical sequences of reinforce-

ment, they maximized more often in the task in which the sequence was

demonstrated to be random. Morse and Runquist (1960) had participants

perform two tasks. In the first probability learning task, participants dropped

an aluminum rod onto the floor and guessed whether it could come to rest

touching one of many parallel lines on the floor (this occurred about 35% of

the time). The outcome (touching or not touching) was recorded and,

unbeknownst to the participants, that exact sequence was used in a subse-

quent light prediction task, in which participants predicted whether the

left or right light will turn on. More maximizing was observed in the

rod-dropping task than in the light prediction task. In the rod-dropping task,

it was evident to the participants that trials were random and independent,

while this was not clear in the light prediction task. Again, features of the
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task being employed had a clear effect on behavior, suggesting that it is not

simply the reinforcement sequences, but also features of the task and

participants’ beliefs about the task, that affected behavior.

Simple manipulation of instructions can also encourage or discourage

belief that sequences are random and promote more maximizing behavior.

Like manipulating task design, different instructions might lead participants

toward or away from maximizing behavior. Supporting the idea that adults

enter the lab with a bias that sequences are not random, researchers found it

easier to convince participants that a sequence is structured rather than

random (Hyman & Jenkin, 1956). To counter this bias, many studies

emphasized to participants that the sequences were random, which tended

to increase maximizing behavior (Braveman & Fischer, 1968; McCracken

et al., 1962; Shanks et al., 2002). Similarly, participants tended to exhibit

more maximizing behavior when they were told that the task was a gambling

task rather than a problem-solving task (Goodnow, 1955; Goodnow &

Postman, 1955). Giving participants additional task information, such as

explicitly telling participants the probabilities of the two alternatives or ask-

ing the participants to recommend a strategy to another person (Fantino &

Esfandiari, 2002) or asking participants to explicitly evaluate a matching versus

maximizing strategy (Koehler & James, 2010) led to more maximizing behav-

ior. In fact, even participants who undershot maximizing were able to artic-

ulate that maximizing would be the ideal strategy to employ (Koehler &

James, 2009, 2010). Adults’ beliefs about the nature of the sequence they

are encountering has a significant effect on behavior, and these beliefs can

be altered through the experimental design and task instructions. Prior

experience with the world may cause adults to approach the task with the

belief that sequences are not random, but various efforts by the experimenter

to convince the participant otherwise seem to lead to more maximizing

behavior.

2.3 Summary
The adult probability learning literature suggests that adults do not proba-

bility match. That is, there does not seem to be evidence for a type of

learning that asymptotes at the probability (π) level. Instead, they tend to

maximize, or respond at rates somewhere between maximizing (1) and

matching (π). When examining the factors that underlie these deviations

from maximizing, we can conclude that the behavior is not well chara-

cterized as matching, given the baggage that word implies about irrational
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decision processes. Instead, adults’ behavior is better characterized as max-

imizing, but with constraints. The constraints are generally task design or

individual factors, including experiences and biases that adults bring to

the lab, that lead participants to believe that trials are not truly independent.

The characterization of adults’ probability learning behavior as maximizing,

but with caveats, is important to consider when examining differences

between adult and child probability learning, or other sequence learning

behavior.

3. Human probability learning: Children

In this review, we saw that animals maximize in probability learning

tasks, if given a sufficient number of training trials, and that variations in the

species of animal or the experimental design may necessitate more or less

training before this maximizing behavior emerges. We further showed that

human adults’ behavior is also much better characterized as maximizing plus

a range of factors that lead to deviations from maximizing, such as explor-

atory searching for a more effective response strategy. As will be clear in the

following section, characterizing the differences between adult and child

performance on probability learning tasks is a difficult endeavor, because

there is no clear consensus of how children behave in probability learning

tasks. Evidence for consistent maximizing or probability matching behavior

is generally hard to find, which makes it difficult conclude exactly how child

behavior differs from adult behavior on probability learning tasks.

Conclusions from animal and human adult performance on probabi-

lity learning tasks may suggest that whatever differences exist between chil-

dren and adults on probability learning task, they are likely to derive from

different task strategies or learned biases that participants bring to the task,

not necessarily different learning mechanisms or capabilities, as would be

suggested by a dual mechanism, matching versus maximizing, account.

3.1 Typical task design
Some task designs used with children were similar to those used with adults.

In some experiments, children guessed which of one or two pictures

would appear on the next card in a deck (Offenbach, 1964) or which of

two lights will turn on (Craig & Myers, 1963; Derks & Paclisanu, 1967).

However, whereas the adult probability learning studies rarely gave partic-

ipants rewards for correct responses, explicit rewards were much more

common with children. Children often received a marble or a token,
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which could be exchanged for coins or prizes at the end of the experiment

(Goldman & Denny, 1963; Jones & Liverant, 1960; Stevenson & Weir,

1959; Sullivan & Ross, 1970; Weir, 1964; Winefield, 1980).

Another important difference between child and adult experimental

designs is that experiments with children tended to consist of fewer trials

than experiments with adults. This is an obvious consequence of working

with younger participants. Experiments with children rarely consisted of

over 100 trials, with the exception of the 200-trial design of Derks and

Paclisanu (1967). Adult studies, on the other hand, rarely consisted of fewer

than 100 trials, with some studies containing as many as 1000 trials (Edwards,

1961). Considering the importance of extended training in both the animal

and adult probability learning literature, it is very likely that the child prob-

ability learning data is affected by the limited number of trials afforded

by working with younger participants. The fact that studies with children

typically employ far fewer trials is an important consideration that is often

overlooked when evaluating the child data and making comparisons with

adults.

3.2 Findings
There is some evidence that younger children maximize more than older

children (Goldman & Denny, 1963; Jones & Liverant, 1960; Stevenson &

Weir, 1959) but also some evidence that younger children under-match

(respond at a rate less than π) more than older children (Craig & Myers,

1963). Other studies find no effect of age (Offenbach, 1964). A somewhat

common effect is a U-shaped tendency to maximize, with the youngest

(typically nursery school) and oldest children or adults (typically late-teens

or undergraduates) exhibiting more maximizing than children between those

ages. Weir (1964) first obtained U-shaped learning results in a three-choice

probability learning task. The youngest children (ages 3–5) and the oldest

children (age 18) tended to maximize more than did the children between

those ages. Later, Derks and Paclisanu (1967) replicated this result in a more

typical two-choice task, finding that nursery school aged children overshot

matching, children between nursery school and 3rd grade undershotmatching

and children older than third grade tended to probability match. Additional

support for U-shaped matching is found in Sullivan and Ross (1970) and

Winefield (1980), making it a somewhat well-documented though hard

to explain finding. Perhaps if it were feasible to perform more trials with

children, we would begin to see more consistent patterns of behavior.
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Another observation of children’s probability learning behavior is that

they do not tend to demonstrate experience-based biases like adults do.

For example, younger children (under about 7 years) do not seem to exhibit

the gambler’s fallacy or expect the other alternative to be correct after a

long run of one alternative (Derks & Paclisanu, 1967). In fact, children

sometimes seem to alternate randomly, often regardless of events on prior

trials or π, which is not a behavior that adults exhibit (Craig & Myers,

1963; Offenbach, 1964). Children’s more seemingly random behavior

can have a number of interpretations. Perhaps younger children are less

biased about what they consider “random,” reflecting different prior expe-

rience. Or perhaps children simply fail to remember events on previous

trials. Consistent with the hypothesis that younger children come to the

task with less bias, younger children who maximize tend to reach that

asymptote faster than older children that maximize do ( Jones & Liverant,

1960; Weir, 1964; Winefield, 1980). However, when there were sequence

probabilities that could be learned, older children learned them faster

(Goldman & Denny, 1963; Sullivan & Ross, 1970), and, in cases when

patterns did not exist, older children were more likely to report attempting

to find one (Craig & Myers, 1963; Offenbach, 1964). This age-related

difference suggests children may not bring the same biases about the non-

independence of trials to probability learning tasks as adults seem to. If, as

it seems, children, particularly older children, are beginning to develop

some of the biases and strategies of adults, then investigating differences in

these biases may better explain age-related differences in behavior than

hypothesized differences in learning mechanisms (matching vs. maximizing).

It is difficult to understand how children approach probability learning

tasks and what children believe to be true about the task. For example,

relative to adults, how readily do children learn the demands of a probability

learning task identified by Green et al., i.e., that one alternative is more

frequently reinforced and that events are independent and coupled? It is pos-

sible that if children have more difficulty remembering outcomes on previ-

ous trials, or integrating that information into a behavior plan, it could

take children considerably longer than adults to learn the parameters of

the task. It may take children a long time to discover that one alternative

leads to a reward more often than the other, and even when they do discover

this, they may not understand how to adjust their behavior to take advantage

of this fact. There is some evidence that children between the ages of 4 and

11 slowly improve in their ability to select one of two alternatives that is

more likely to yield a reward (Falk, Falk, & Levin, 1980), so adjusting one’s
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behavior to observed probabilities could be a skill that emerges with age.

Simply understanding how the task works, and how to adjust one’s behavior

in response to this information, may itself be a challenge for children.

However, outside of the probability learning literature, there is signifi-

cant evidence that even infants as young as 8months have a sophisticated

understanding of probabilities. By the end of the first year of life, children

are surprised at very low-probability events, such as an experimenter with-

drawing many red balls from a container with many white and few red balls

(Xu & Denison, 2009; Xu & Garcia, 2008). By 15months, infants can infer

information about samples from facts about populations (Denison & Xu,

2010), even depending on the representativeness of the sample (Gweon,

Tenenbaum, & Schulz, 2010). These studies suggest that children and

even infants have a sophisticated understanding of probability. So perhaps

observed differences between children and adults are not due to a lack of

understanding of probability, but an increased difficulty learning which

alternative is more often reinforced. Alternately, children may struggle to

appropriately use the information they observe about relative probabilities

to guide their action. From work in other domains, it is clear that task mat-

ters for assessing what children do or do not know; for example, children

succeed earlier in false-belief tasks when the task imposes fewer processing

demands (Scott & Baillargeon, 2017). Perhaps probability learning tasks

are not ideal for assessing what children do or do not know about pro-

bability. The locus of the difficulty that children experience in probability

learning tasks is unclear and many candidates, that need not be mutually

exclusive, exist.

3.3 Summary
Despite the popular belief that children generally maximize in probability

learning tasks, reviewing the literature reveals that there is actually limited

evidence that children indeed maximize. There is evidence that children

and adults may perform differently in probability learning tasks, but it is

not clear why these differences exist. Some of these differences may derive

from consequences of experimental design, such as the number of trials, or

explicit reinforcement, which also tend to differ across the age groups.

A major finding in the adult literature that task design matters and has

effects on the biases that adults bring to the tasks, which seem to predict their

behavior. It is possible that an investigation of the learned biases and beliefs

that participants of different ages bring to the task will end up being the best
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way to describe differences in behavior across development. If children

approach the task with fewer, or different, biases than adults—specifically

that outcomes across trials are not independent—this may predict many

of the behavioral differences between adults and children. Of course, chil-

dren and adults differ in other ways too. Children may be less adept at

recalling outcomes on past trials, may not understand trial boundaries as well

as adults, or may find the task more difficult for a variety of reasons. It is

important to consider which differences between children and adults might

reflect general developmental changes, like improved memory abilities, and

which differences might reflect task-specific beliefs that can emerge from

experience with events and patterns in the world.

4. Implications of probability learning for other
domains

The goal of this review of the probability learning literature was to

first document and summarize the observed patterns of behavior, and then

to understand the reasons for this observed behavior. However, the impli-

cations of this review go beyond probability learning tasks. Many other

domains refer to the probability learning literature as an underlying distal

explanation for observed behavior, especially in complex cognitive tasks.

The logic is that the learning mechanisms and processes that underlie behav-

ior on a simple task like probability learning behavior may also underlie

other, more complex behaviors.

4.1 Probability learning and language development
An observation commonly made by researchers, parents and anyone who

tends to spend a good deal of time around children, is that children learn

language differently than adults. There is some empirical support for this

observation. Individuals who learn language earlier in life tend to exhibit

greater language proficiency (Bialystok & Hakuta, 1999; Johnson &

Newport, 1991; Newport, 1990). In addition, speakers who learn a language

earlier in life tend to exhibit different patterns of neural activation than

speakers who learn a language later in life (Neville & Bruer, 2001). The

underlying reasons for these language-learning differences between children

and adults are the topic of substantial research and debate.

One potential explanation for child-adult differences in language

acquisition is that there is a critical period for language learning. The idea

of a language critical period was popularized by Lenneberg (1967), who
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argued that language must be learned during this period for a speaker to

attain a native-like competency of the language. This critical period is often,

but not always, thought of as being language-specific and biologically

defined.

An alternative perspective is that the observed differences in language

learning in children and adults are not due to a biologically determined

language learning window, but are a consequence of language learning itself.

These approaches often emphasize the importance of entrenchment: that

experience with the statistics of one language makes it harder learn a second

language, because that involves ignoring well-practiced statistics (Elman

et al., 1996; Plunkett, 1997; Seidenberg & Zevin, 2006). According to these

approaches, the accumulation of learning itself is what makes subsequent

language learning more difficult later in life.

A third hypothesis is that domain-general differences in learning abilities

account for differences between adult and child language learning abilities.

One example is the Less-is-More hypothesis (Newport, 1988, 1990), which

hypothesizes that children’s limited memory capacities aid language acqui-

sition. Younger learners store smaller bits of language, perhaps because

of their limited memory capacities. This smaller unit could account for

differences in child and adult language learning abilities by simplifying the

language to meaning mapping, which is a necessary component of language

learning (Newport, 1990; Singleton & Newport, 2004). Approaches that

emphasize changes in domain-general learning across the lifespan are often

the approaches that refer to probability learning, or other non-language spe-

cific learning, as a means of grounding age-related changes in language learn-

ing in age-related changes in other learning tasks.

The reason that probability learning is often evoked in discussions of

age-related differences in language learning is that some of the age-related

language learning behavior of interest involves learning noisy or probabilis-

tic input, much like what participants experience in a probability learning

task. A great deal of literature details differences in how children and adults

learn patterned input that contains some irregularity or noise. In both

naturalistic and laboratory settings, adults and children tend to learn and

reproduce these irregularities in different ways, and these differences in

behavior are thought to be representative of fundamental differences

between the ways in which children and adults learn language.

One naturalistic context in which children systematize probabilistic

input is the process of creolization, in which two languages come into

contact and form a new natural language that combines the two.
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This creolization process is often driven by children. Sankoff and Laberge

(1973) noticed that children tended to regularize the usage and stress of a

future marker in Tok Pisin, a language of New Guinea. Similar observations

have been made in investigations of a newly emerging sign language in

Nicaragua, in which Children seem to systematize in ways that deviate from

their input, such as systematically using physical space or direction of move-

ment to encode grammatical meaning (Senghas & Coppola, 2001; Senghas,

Kita, & Ozyurek, 2004). This process of regularization also occurs when

children learn language from immigrant caregivers who may not be fluent

speakers of the local language. One investigation found that children

of immigrants in Sweden tended to generalize the irregular Swedish input

they hear from their parents, but not necessarily in ways that resembled stan-

dard Swedish (Kotsinas, 1988). A similar example can be found in the case

study of Simon, a child learning American Sign Language from non-natively

signing parents. Simon regularized the irregular morpheme use that was

present in his parents’ speech, to create more consistent signs (Newport,

1999; Singleton & Newport, 2004). In real-life situations in which children

and adults learn language from speakers who are sometimes inconsistent,

children’s behavior is characterized by a regularization of the noisy input,

while adults’ behavior is not.

Given that these naturalistic situations seemed to point to important

differences between language learning in children and adults, they have

often been approximated in the laboratory with artificial grammar learning

studies. In these studies, children and adults are typically presented with

sentences in an artificial language that contain a probabilistic dependency

and are later asked to produce sentences in that language. The general find-

ing is that, as in more naturalistic situations, adults tend to reproduce the

inconsistencies in the input while children tend to regularize and produce

patterns that did not exist in the original training set (Hudson Kam &

Newport, 2005, 2009; Pitts Cochran, McDonald, & Parault, 1999). Thus,

there appears to be a convergence between the creolization literature

and laboratory-based investigations of artificial grammar learning. One

hypothesis for why children are good at regularizing noisy input, while

adults are not, is that children’s regularization reflects domain-general

developmental difference in learning about and responding to probabilistic

information.

The hypothesis linking age-related differences in language learning

to probability learning is that children’s tendency to regularize noisy lan-

guage input is analogous to children’s tendencies to maximize in probability

learning tasks. In both cases, children ignore random variation to create a
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systematic pattern. Many researchers have concluded that age-related differ-

ences on probability learning tasks may help explain age-related differences in

language learning (Hudson Kam & Chang, 2009; Hudson Kam & Newport,

2005, 2009; James & Koehler, 2011; Perfors & Burns, 2010; Pitts Cochran

et al., 1999; Ramscar & Gitcho, 2007; Singleton & Newport, 2004;

Wonnacott, 2011; Yurovsky, Boyer, Smith, & Yu, 2013). One goal of the

present review is to determine if this analogy between language learning

and behavior on probability learning tasks is merited.

As has been made clear from reviewing the relevant probability learning

literature, differences between children and adults on probability learn-

ing tasks are not straight-forward. First, there is not even a clear consensus

on what child behavior is like, given how noisy the results seem to be.

Second, a number of task characteristics can systematically shift behavior,

so it is hard to identify a canonical adult or child behavioral pattern inde-

pendent of various experimental design choices. Even if there were a stron-

ger consensus about differences between children and adults, it would be

difficult to attribute those differences to differences in learning versus other

kinds of factors. For example, the probability learning literature would

suggest that children’s maximizing behavior should be caused by not know-

ing to, or not being able to find a pattern in the input. Children’s behavior

on probabilistic artificial grammar tasks may also be a product of different

strategies and biases, or something different altogether. It is unclear whether

there might be commonalities in the strategic processes that underlie age-

related differences in probability learning and language learning. However,

what is clear from this review is that age-related differences in probability

learning tasks do not readily explain age-related differences in language learn-

ing but are rather part of the question of what changes, and why, throughout

cognitive development.

If qualitative differences in probability learning are not informative of

age-related tendencies to generalize on language learning tasks, what might

be a potential explanation? One proposed explanation is that age-related

differences in memory may contribute to the observed behavior. Hudson

Kam and Chang (2009) found less regularization in adults in an artificial

grammar task like that of Hudson Kam and Newport (2009) when lexical

retrieval was eased by presenting participants with the words of the artifi-

cial language on flashcards during the production phase of the task, sug-

gesting a link between memory load and regularization. Likewise, Pitts

Cochran et al. (1999) taught adults an artificial sign language and found that

adults tended to have trouble rearranging subcomponents of complex signs,

but rather tended to produce the signs holistically, as they had been learned.
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However, when participants had to complete a simultaneous task to increase

memory load, they were better able to recombine the learned signs. These

results manipulating memory load with adults are consistent with the idea

that children’s limited memory abilities force them to store smaller chunks

of linguistic information, which may take more time than storing larger

chunks but ultimately makes the sign-to-meaning mapping easier and facil-

itates regularization. Future research might investigate the extent to which

these memory and chunking abilities must be domain general and relate to

experience-independent development, or whether they may be domain

specific—related specifically to experience with language. These differences

may derive from biological developmental factors and neuronal changes

across the lifetime. Alternatively, these observed differences inmemorymight

derive from greater experience with language itself. Memory in a domain is

tied to expertise in a domain (e.g., Jones &Macken, 2015; Klem et al., 2015;

MacDonald & Christiansen, 2002; Schwering & MacDonald, 2020; see

Simmering & Perone, 2013 for a discussion related to spatial memory), so

there are many potential explanations for developmental trajectories of

memory capacity.

Other data suggests that the relationship between memory capacity and

generalization has been oversimplified. In some studies, children are only more

likely than adults to over generalize probabilistic patterns in certain situations.

In some tasks, children do not seem to exhibit the classic over-regularization

(Wonnacott, 2011) and in fact show patterns of data in probabilistic arti-

ficial grammar learning tasks more similar to adults (Wonnacott, 2011;

Wonnacott, Newport, & Tanenhaus, 2008). Further, memory limitations in

adults do not necessarily lead to over-regularization (Perfors, 2012; Perfors

& Burns, 2010), suggesting memory alone cannot explain variability in regu-

larization behavior. Clearly the relationship between sequence learning, lan-

guage, task, and memory is complicated. Future research investigating the

relationship between memory, sequence learning, and various sorts of experi-

ence that an individual might bring to the laboratorymay help clarify this com-

plicated relationship and help us understand the origin of language learning

differences between children and adults.

4.2 A note about generalization
A point that is often overlooked in the discussion of generalization by chil-

dren is that a single behavior can be considered generalizing or matching,
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depending on the units of behavior that are counted. For example, when

English-speaking children learn not to over-regularize the past tense (e.g.,

produce went and ate rather than goed or eated), they do not always use the

regular past tense in all obligatory contexts. Rather, they alternate between

the correct form (ate) and the over-regularized form (eated) across situations

and even from one day to the next (Marcus et al., 1992; McClelland &

Patterson, 2002). While children’s over regularization of irregular forms is

often thought of as akin to probability maximizing, as children indeed

over-regularize irregular verb forms, this is not the only interpretation of

the data. Children’s acquisition of the regular past tense suffix is character-

ized by probabilistic alternation of the correct and over-regularized form of a

verb, which does not resemble maximizing, when the behavior is observed

across multiple hours, days or months.

Another point to consider is that the situations approximated by artificial

grammar studies, situations in which there is probabilistic variability, are

quite rare in the linguistic environment. In language, variation is rarely arbi-

trary, and typically occurs with a difference in meaning. For example, “he”

and “she” do not alternate probabilistically, but rather correlate with the

gender of the referent. It is important to consider the extent to which lan-

guage acquisition studies with probabilistic dependencies are representative

of language acquisition. Future studies may complement existing artificial

grammar studies by investigating alternations that are not probabilistic,

but relate to differences in meaning, as alternations do in typical language.

Another question that merits additional attention is what noisy input

actually sounds like to children. To a child receiving probabilistic linguistic

input, are low-frequency productions perceived as low-frequency produc-

tions, or just nonsense? When children have little linguistic experience, per-

haps these low-frequency occurrences are just interpreted as buzz or a cough

might be, and do not necessarily get perceived or encoded or weighted the

same as high-frequency productions do. If children are more likely than

adults to discount these rare productions, it should hardly be surprising that

children will exhibit more clear maximizing behavior.

4.3 Implications for other domains
The notion of probability learning is also evoked to explain the develop-

ment of causal inference in children. Specifically, in a Bayesian inference

framework, sometimes references to probability matching or maximizing

are made to explain how children select between different hypotheses
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that might explain an underlying pattern of data. In many of these tasks, chil-

dren make predictions or guesses, after viewing some probabilistic string

of events, about what color block is likely to emerge from a bag, or what

objects make an apparatus (often called a “blicket detector”) turn on.

There is evidence that children often alternate between different explana-

tions for data, but rather than being truly random, this alternation may

reflect some ordered or rational process. For example, children seem to

be sensitive to the probability of different explanations for the observed data

(Bonawitz & Lombrozo, 2012; Kushnir & Gopnik, 2007) and more make

causal inferences consistent with the probabilities of competing explanations

of the data.

Beyond simply being sensitive to the probability of competing hypoth-

eses, some proposals for how children select, or alternate between different

hypotheses evoke probability learning. Under this analogy children might

“maximize” or always select the mostly likely hypothesis, or “probability

match” and entertain hypotheses proportional to their probabilities. In some

studies, children’s behavior seems to more closely resemble probability

matching, as children select different hypotheses proportional to the relative

probabilities of those hypotheses (Denison, Bonawitz, Gopnik, & Griffiths,

2013). In other studies, behavior is more like “undershooting maximizing,”

where children occasionally select the less likely hypothesis, but less often

than its proportionality would suggest (Kushnir & Gopnik, 2007; Sobel,

Tenenbaum, & Gopnik, 2004). The goal of many of these causal inference

studies is to understand the rationality (as opposed to random choice or

irrationality) that may underlie children’s choice of hypothesis. Probability

learning may be evoked to explain why children’s behavior is in fact more

rational than it may initially appear. Thus, understanding more about proba-

bility learning, specifically whether, and under what circumstances behavior

on probability learning tasks might be considered rational, is important if

probability learning is evoked as an explanation for children’s behavior on

causal inference tasks.

4.4 Implications for the process of science
The present review has a number of implications for the process of science,

beyond the content of the review itself. Some patterns that emerge from this

review may serve as broad insights in the psychological sciences as a whole.

First, a theme that emerges from the present review is the important

role of task design in behavioral studies. The animal and adult literatures
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most profoundly show that changing features of the task: the length of the

task, what happens when an incorrect target is selected (guidance, correction

and or-correction), how sequences of reinforced alternatives are selected,

and various aspects of task instructions given to participants all profoundly

affect behavior. An important finding of the present review, whichmay hold

true for other domains, is that it may not be possible to identify a canonical

pattern of behavior outside of these task characteristics. Patterns of behavior

on a task may not be satisfactorily described without a deep understanding of

the task and task demands that produced that pattern of behavior.

Second, in performing this review, it is clear that researchers occasionally

miscite research, attributing claims that the authors did not make, or selec-

tively cite research. It is only through a deeper dive into the literature

that some of these citation errors become evident. For example, many papers

cite Estes (1964), Estes (1976), Myers (1976) and Vulkan (2000) as providing

evidence that adults probability match in probability learning studies, but

these papers do not make this claim. The two Estes papers make versions

of this claim, with the earlier paper making the claim of probability matching

more strongly. However, both papers include substantial discussion of the

experimental design dimensions that affect behavior and remind the reader

that the observed behavior in probability learning tasks reflects a complex

combination of different types of knowledge and learning. Myers (1976)

and Vulkan (2000) do not claim that adults tend to probability match.

The bulk of Myers (1976) considers different mathematical models of prob-

ability learning and how to best account for the observation that extended

training, task instructions, and monetary reward are associated with over-

shooting matching, not true matching. Vulkan (2000, p. 15) concludes that

“not all hope is lost for the neoclassical approach to economics: “matching”

is not robust, and some people do end upmaximizing their expected utility.”

This is clearly not an endorsement of probability matching in adults.

Though Vulkan (2000) does focus on reasons that adult performance

might diverge from true maximizing, it is in the context of trying to under-

stand the biases that adults might bring to the task and the various task

characteristics (not unlike those described in my review) that affect behavior.

None of these papers support the strong claim that adults tend to probability

match on probability learning tasks.

An example of selective citation is the high citation rate of papers that

find evidence that adults probability match or children maximize. For exam-

ple, Neimark and Shuford (1959) is extensively cited as evidence that adults

probability match (even by the great William Estes), despite the fact that it
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is an outlier among the adult studies and few other adult studies obtained this

result. In fact, Neimark and Shuford (1959) has three times the citations as

Morse and Runquist (1960), the aluminum rod study with the yoked light

prediction task, which showed that how the reinforcement schedule was

generated clearly affected participants’ tendencies to match, overshoot

matching or maximize. Authors seem to be selectively citing work consis-

tent with claims they want to make, even if those findings are not charac-

teristic of the literature as a whole. Put frankly, the file drawer problem is the

least of our concerns if we selectively read the published literature.

On a more positive note, the present review also illustrates the richness

and depth of the existing literature and how much can be gained by

re-learning what was once known. Likewise, a deep reading of a related lit-

erature, for example, non-human animal probability learning, may provide

enormous insight on a related literature, for example, human adult proba-

bility learning. A lot of knowledge exists in the literature, sometimes in

unexpected places. Some research questions are best answered with new

studies, and some are best answered, or at least guided, by revisiting old stud-

ies. Perhaps we need to remind ourselves and our students that a deep and

broad understanding of the literature is an invaluable asset for even the most

forward-thinking research program.

5. Conclusions

This review has yielded a number of findings. In probability learning

tasks, non-human animals tend to maximize if the task consists of a sufficient

number of trials. Human adults maximize under some conditions, and their

failure to always maximize seems be a consequence of attempting to find a

pattern in the probability sequence, or other sources of knowledge or bias

that adults bring to the task. The probability learning findings about children

are less conclusive. There is some evidence that children maximize more

than adults, but other studies refute that pattern. Perhaps if children do max-

imize more than adults, it is because they cannot, or do not know that they

should, look for a pattern, or that they do not have the same expectations

about the nature of the generative process of that sequence as do adults.

One important conclusion that I draw from this review is that there is

no discrete learning strategy that asymptotes at the π (probability level)

over training. The range of behavior on probability learning tasks, which

is generally characterized by maximizing and undershooting maximizing,

can better be described as a single learning mechanism that would over time

34 Jessica L. Montag

ARTICLE IN PRESS



lead to maximization, plus a number of conditions and biases that impede

maximizing. These conditions and biases may include experiences, beliefs

or even memory limitations that the organism brings to the task. The

fundamental questions of probability learning should not be “when do indi-

viduals maximize and when do they probability match” but rather, “what

factors lead participants to undershoot maximization.” It is important to

use terminology that accurately describes the behavior we observe, which

is “maximizing” and “undershooting maximizing” to reflect the continuum

of behavior that an individual may exhibit in a given probability learning

task.

More generally, age-related differences in probability learning tasks

are sometimes evoked to help us understand developmental trajectories in

various domains. Understanding more about the factors that drive behavior

in probability learning tasks themselves is important for understanding the

explanatory power, or lack of explanatory power, of probability learning

behavior as an explanation for patterns and trajectories of behavior in other

cognitive domains.
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